# Singular BGG sequences for the even orthogonal case

Archivum Mathematicum (2006)

- Volume: 042, Issue: 5, page 267-278
- ISSN: 0044-8753

## Access Full Article

top## Abstract

top## How to cite

topKrump, Lukáš, and Souček, Vladimír. "Singular BGG sequences for the even orthogonal case." Archivum Mathematicum 042.5 (2006): 267-278. <http://eudml.org/doc/249829>.

@article{Krump2006,

abstract = {Locally exact complexes of invariant differential operators are constructed on the homogeneous model for a parabolic geometry for the even orthogonal group. The tool used for the construction is the Penrose transform developed by R. Baston and M. Eastwood. Complexes constructed here belong to the singular infinitesimal character.},

author = {Krump, Lukáš, Souček, Vladimír},

journal = {Archivum Mathematicum},

keywords = {BGG sequence; invariant differential operator; parabolic geometry; Penrose transform},

language = {eng},

number = {5},

pages = {267-278},

publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},

title = {Singular BGG sequences for the even orthogonal case},

url = {http://eudml.org/doc/249829},

volume = {042},

year = {2006},

}

TY - JOUR

AU - Krump, Lukáš

AU - Souček, Vladimír

TI - Singular BGG sequences for the even orthogonal case

JO - Archivum Mathematicum

PY - 2006

PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno

VL - 042

IS - 5

SP - 267

EP - 278

AB - Locally exact complexes of invariant differential operators are constructed on the homogeneous model for a parabolic geometry for the even orthogonal group. The tool used for the construction is the Penrose transform developed by R. Baston and M. Eastwood. Complexes constructed here belong to the singular infinitesimal character.

LA - eng

KW - BGG sequence; invariant differential operator; parabolic geometry; Penrose transform

UR - http://eudml.org/doc/249829

ER -

## References

top- Baston R., Quaternionic complexes, J. Geom. Phys. 8 (1992), 29–52. (1992) Zbl0764.53022MR1165872
- Baston R. J., Eastwood M. G., Penrose transform; Its interaction with representation theory, Clarendon Press, Oxford, 1989. (1989) Zbl0726.58004MR1038279
- Calderbank D. M. J., Diemer T., Differential invariants and curved Bernstein–Gelfand–Gelfand sequences, J. Reine angew. Math. 537 (2001), 67–103. Zbl0985.58002MR1856258
- Čap A., Two constructions with parabolic geometries, preprint, arXiv:math.DG/0504389 Zbl1120.53013MR2287124
- Čap A., Schichl H., Parabolic geometries and canonical Cartan connections, Hokkaido Math. J. 29 3 (2000), 453–505. Zbl0996.53023MR1795487
- Čap A., Slovák J., Souček V., Bernstein-Gelfand-Gelfand sequences, Ann. of Math. (2) 154 1 (2001), 97–113. MR1847589
- Colombo F., Sabadini A., Sommen F., Struppa D., Analysis of Dirac systems and computational algebra, Birkhäuser, Basel, 2004. Zbl1064.30049MR2089988
- Franek P., Generalized Verma module homomorphisms in singular character, submitted to Proc. of the Winter School ’Geometry and Physics’, Srni, 2006. Zbl1164.22310MR2322409
- Krump L., Construction of BGG sequences for AHS structures, Comment. Math. Univ. Carolin. 42 1 (2001), 31–52, Zbl1054.53071MR1825371
- Krump L., Souček V., Hasse diagrams for parabolic geometries, Proc. of ’The 22nd Winter School ’Geometry and Physics’, Srní 2002, Rend. Circ. Mat. Palermo (2) Suppl. 71 (2003). Zbl1047.53014MR1982440
- Nacinovich M., Complex analysis and complexes of differential operators, LNM 950, Springer-Verlag, Berlin, 1980. (1980) MR0672785
- Sharpe R. W., Differential geometry, Grad. Texts in Math. 166 (1997). (1997) Zbl0876.53001MR1453120
- Slovák J., Parabolic geometries, Research Lecture Notes, Part of DrSc. Dissertation, Preprint IGA 11/97, electronically available at www.maths.adelaide.edu.au.
- Šmíd D., The BGG diagram for contact orthogonal geometry of even dimension, Acta Univ. Carolin. Math. Phys. 45 (2004), 79–96. Zbl1138.17310MR2109696

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.